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Abstract. We compare the one-loop renormalization group flow to strong coupling of the electronic inter-
actions in the two-dimensional t-t′-Hubbard model with t′ = −0.3t for band fillings smaller and larger than
half-filling. Using a numerical N-patch scheme (N = 32, . . . , 96) we show that in the electron-doped case
with decreasing electron density there is a rapid transition from a dx2−y2-wave superconducting regime
with small characteristic energy scale to an approximate nesting regime with strong antiferromagnetic ten-
dencies and higher energy scales. This contrasts with the hole-doped side discussed recently which exhibits
a broad parameter region where the renormalization group flow suggests a truncation of the Fermi surface
at the saddle points. We compare the quasiparticle scattering rates obtained from the renormalization
group calculation which further emphasize the differences between the two cases.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 74.72.Jt Other cuprates

1 Introduction

Viewed from a weak coupling perspective, the two-dimen-
sional Hubbard model exhibits an interesting interplay be-
tween different types of fluctuations. Particular attention
has been devoted to the situation close to half band filling,
mainly because of its relevance to the high-Tc supercon-
ducting cuprates [1]. For these particle densities, because
of the approximate nesting between opposite sides of the
Fermi surface (FS) or due to the large density of states
around the saddle points of the dispersion at (π, 0) and
(0, π), the scattering processes with momentum transfer
≈ (π, π) will be strongly enhanced. Besides the fact that
these scattering processes drive antiferromagnetic (AF)
fluctuations, they also create a dx2−y2-wave component
in the pair scattering [2]. One-loop renormalization group
(RG) techniques represent a powerful method to ana-
lyze the coupling between antiferromagnetic and super-
conducting fluctuations in an unbiased way (see [3–11] and
the present paper).

Apart from the competition between two different
types of ground states, the hole-doped t-t′ Hubbard model
close to half filling may exhibit a richer variety of possible
ground states especially when umklapp scattering between
electrons becomes important. In [7] and [10] it was argued
that in the case of not-too-small values of the next-nearest
neighbor hopping t′, e.g. t′ = −0.3t, when the FS is close
to the saddle points at (π, 0) and (0, π), the RG flow to
strong coupling between the k-space regions around the
saddle points has strong similarities with the RG flow in
the half-filled two-leg Hubbard ladder. In the latter sys-
tem, the ground state is well understood and is an insu-
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lating spin liquid (ISL) [12]. Although there is no reliable
theory for the two-dimensional case, the similarity of the
RG flows suggests that here as well the true strong cou-
pling state of the k-space regions around the saddle points
is an ISL with a truncated FS. The parameter region in
which this interesting flow to strong coupling occurs was
called the saddle point regime.

In this paper we investigate the RG flow to strong
coupling for band fillings larger than half-filling, corre-
sponding to electron-doping the half-filled system. Again
we choose t′ = −0.3t. The main observation is that in the
electron-doped case the saddle point regime of the hole-
doped case is absent. Instead of the mutually reinforcing
flow between AF and d-wave pairing processes which was
found in the saddle point regime, there is a clear separa-
tion between the energy scales of the two channels. We do
not find any signs for a Fermi surface truncation around
the saddle points. Moreover the “hot” Brillouin zone (BZ)
regions responsible for the leading flow are now located
closer to the BZ diagonals. The different result is a direct
consequence of the location of the Fermi surface, which in
the electron-doped case crosses the umklapp surface (US,
defined in Fig. 4) in the BZ diagonal, therefore giving rise
to strong scattering between the FS segments on opposite
sides connected by the wave vector (π, π). These AF pro-
cesses generate only a weak attractive dx2−y2 component
in the pair scattering channel and do not drive the pair-
ing processes at low scales as they do in the saddle point
regime of the hole-doped case. Consequently, upon in-
creasing the band filling such that the (π, π) processes get
cut off, we obtain a rather abrupt transition from a flow to
strong coupling dominated by umklapp and AF processes
with high critical scale to a Kohn-Luttinger-like instability
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with predominant dx2−y2-Cooper processes at comparably
low critical scale. Therefore the electron-doped case con-
sidered here strongly resembles the hole-doped cases with
small absolute values of t′ analyzed in [6] and [8,9] and
differs from the hole-doped case with t′ = −0.3t discussed
in [10].

As another piece of information we present results for
the scattering rates of quasiparticles at the FS with a
RG method described below. These calculations further
illustrate the differences between the hole- and electron-
doped cases. According to model calculations by Ioffe and
Millis [13] and also Hlubina [14] most transport experi-
ments of the optimally hole-doped cuprates can be prop-
erly described by assuming a pronounced anisotropy in the
scattering rate. The anisotropy is such that the quasipar-
ticles around the saddle points scatter strongly and their
spectral weight becomes smeared out while the quasipar-
ticles in the BZ diagonal are only subject to a weak Fermi-
liquid-like scattering. Our RG calculations with frequency-
independent coupling constants can certainly not give
reliable information about the frequency dependence of
the self-energy. On the other hand their k-space resolu-
tion is rather good. Applying the RG scheme we observe a
pronounced angular dependence of ImΣ(kF, ω = 0) with
maximal scattering for particles at the saddle points and
weaker scattering in the BZ diagonals. In the electron-
doped case, the anisotropy is weaker and the FS regions
with the largest scattering rate are located in the BZ di-
agonals, tied to the intersection of the FS with the US.

Angular resolved photoemission (ARPES) allows one
to measure the temperature dependence of ImΣ(ω =
0,kF) directly from the width of the quasiparticle peaks.
For optimally hole-doped Bi 2212, Valla et al. [15] found a
linear-T dependence almost everywhere on the FS. For a
comparison we calculate the quasiparticle scattering rates
at high temperatures, where the RG flow does not diverge.
Our results for the hole-doped case are qualitatively sim-
ilar to the experimental data. In the electron-doped case
the RG calculations yield a non-linear T -dependence of
the scattering rates closer to conventional T 2 behavior.

2 The method

Here we describe the RG method and the scheme for the
calculation of the quasiparticle scattering rates. Readers
who are only interested in the results can proceed to the
next section.

2.1 RG flow of interactions and susceptibilities

The interplay between the different fluctuations men-
tioned in the introduction can be appropriately analyzed
within one-loop RG where one successively integrates out
intermediate states according to their band energy εk. For
the two-dimensional Hubbard model on the square lattice
with nearest neighbor hopping t and next-nearest neigh-
bor hopping t′,

εk = −2t (cos kx + cos ky)− 4t′ cos kx cos ky − µ,

,= =

Fig. 1. The one-loop RG equations for two- and four-point
vertex function. The dot symbolizes the derivative with respect
to the energy scale Λ.

4k ,s’

k1,s

2k ,s’

3k ,s

Fig. 2. The coupling function VΛ(k1,k2,k3). k1, s (k2, s
′)

specify the first (second) incoming particle, k3, s (k4, s
′) be-

long to the first (second) outgoing particle.

where µ is the chemical potential and the lattice constant
is set to unity.

The RG scheme for 1PI irreducible vertex functions
which we use is explained and discussed in detail in ref-
erence [16]. Here we give simple graphical explanation of
the RG flow for the two- and four-point vertex functions.
The flow of higher order irreducible vertex functions is not
taken into account.

The differential equations for the two-point vertex
(yielding the scale-dependent self-energy ΣΛ(k, iω)) and
the four-point vertex function, which describe their RG
flow with decreasing energy scale Λ, are described graph-
ically in Figure 1. At the internal vertices we have four-
point vertex functions at scale Λ connecting the incoming
and outgoing lines with the internal ones. Crystal mo-
menta and Matsubara frequencies are conserved at the
vertices. One of the two internal lines corresponds to a so-
called single scale propagator SΛ which is only non-zero
for modes at scale Λ while the other line denotes a full
Green’s function GΛ with low energy modes below scale
Λ cut out through a cutoff function C(Λ, |εk|). Through-
out this paper we neglect possible self-energy corrections,
therefore we have

GΛ(k, iω) =
C(Λ, |εk|)
iω − εk

and SΛ(k, iω) =
∂ΛC(Λ, |εk|)

iω − εk
·

The scale-dependent spin-rotation invariant four-point
vertex function ΓΛ(k1, s1,k2, s2,k3, s3,k4, s4) can be ex-
pressed in terms of a coupling function VΛ(k1,k2,k3)
[10,16] which is determined for the case s1 = s3 and
s2 = s4. The si denote the z-components of the spins
of incoming (s1 and s2) and outgoing (s3 and s4) parti-
cles. VΛ(k1,k2,k3) is represented graphically in Figure 2.
This means that the electron-electron interaction at en-
ergy scale Λ is a function of the two incoming wave vec-
tors k1 and k2 and one outgoing wave vector k3. For the
bare Hubbard interaction at starting scale Λ0 ≈ 4t, we set
VΛ0(k1,k2,k3) = U . For all calculations in this paper we
choose U = 3t. The flow of VΛ(k1,k2,k3) with decreasing
the energy scale Λ is then given by all types of one-loop
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(a) (b)

(c)

Fig. 3. The contributions to the right–hand side of the
RG equation for the coupling function VΛ(k1,k2,k3), (a) the
particle–particle term, (b) the crossed particle–hole term, (c)
the direct particle–hole terms; the first of these three graphs
gets a factor −2 because of the fermion loop.

diagrams including particle-particle and particle-hole dia-
grams with all possible momentum transfers (see Fig. 3).

For the numerical integration of these coupled equa-
tions we use a phase space discretization following Zanchi
and Schulz [6]. The BZ is divided up into nN patches cen-
tered around N lines. Each line starts from the origin in
a certain angular direction θ(k) and from the (±π,±π)-
points so that the lines meet at the umklapp surface. The
phase space segments around these lines are then further
split into n patches. Here we took n = 3 where one patch
per line is centered around the FS with e.g. |ε(k)| < 0.4t,
while the other two patches cover phase space regions at
higher positive or negative band energy.

Then the coupling function is discretized as follows:
we approximate VΛ(k1,k2,k3) by a constant for all wave
vectors in the same patches and calculate the RG flow
for the subset of interaction vertices with one wavevector
representative for each patch. In the low energy patches
around the FS we choose to take these wave vectors as the
crossing points of the N lines with the Fermi surface (FS),
the wave vectors for the remaining patches away from the
FS correspond to a higher band energy, e.g. |ε(k)| = 0.8t
(see Fig. 4). The phase space space integrations are per-
formed as sums over the patches and integrations over the
radial direction along 3 or 5 lines inside each patch. Most
calculations were done using a 32× 3 system, i.e. N = 32
and n = 3. Two typical Fermi surfaces with N = 32 points
are shown in Figure 5.

Along with the flow of the interactions we calculate
several static susceptibilities by coupling external fields of
appropriate form to the electrons. During the flow these
external coupling are renormalized through one-loop ver-
tex corrections, as described in reference [10]. The pairing
and AF susceptibilities can be calculated directly with
the RG flow of the coupling function. The susceptibilities
and couplings to uniform external charge and spin fields
require special care as they only involve particle-hole ex-
citations in a shell around the FS with width of the tem-
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Fig. 4. The Brillouin zone, Fermi and umklapp surfaces and
the lines in the patch centers for N = 32. The solid dots in
the patches denote the wave vectors for which the four-point
vertex function is calculated. For all wave vectors inside the
same patch, VΛ(k1,k2,k3) is approximated by a constant. The
solid line denotes the non-interacting FS for t′ = −0.3t and
µ = −t, which is in the saddle point regime of hole-doped
case. The curved dashed line is a typical FS for the electron-
doped case. The straight dashed lines connecting the (±π, 0)-
and (0,±π)-points denote the umklapp surface. The arrows
symbolize umklapp processes between the saddle point and
the BZ diagonals, respectively.
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Fig. 5. The Fermi surfaces and N = 32 points kF(ki) for
which the coupling function VΛ(k1, k2, k3) is calculated. Left
plot: µ = −1.05t (hole-doped, 〈n〉 ≈ 0.83). Right plot: µ = 0
(electron-doped, 〈n〉 ≈ 1.2 per site).

perature. Before the cutoff Λ reaches that scale the inter-
actions have typically grown larger than the bandwidth
such that the one-loop flow is not reliable any longer. In
order to get a qualitative result for these cases we stop
the flow of the interactions at a certain scale Λfreeze and
treat them as constants in the continuation of the flow of
the susceptibilities down to Λ = 0 where we obtain the
main contributions to the uniform susceptibilities. This
is basically equivalent to stopping the RG flow at Λfreeze

and calculating these susceptibilities for the effective the-
ory below the cutoff Λfreeze within RPA (random phase
approximation) using the renormalized interactions given
by the RG down to Λfreeze. A similar way to obtain the
uniform susceptibilities from the flow of the Landau func-
tion has been used in reference [8].
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2.2 Approximate calculation of the scattering rates

Here we describe an approximation scheme for the calcu-
lation of the imaginary part of the self-energy from the
flow of coupling function. The technical problem occur-
ring in the RG formalism presented above is that we have
neglected all frequency dependencies of the four-point ver-
tex, hence the four-point vertex in the one-loop contribu-
tion to Σ at scale Λ in Figure 1 is a real quantity and the
diagram does not give an imaginary part. This deficiency
can be repaired to a large extent by replacing the approx-
imate frequency-independent vertex with the solution of
the one-loop RG equation for the four-point vertex in its
integral form. This effectively yields a two-loop term cor-
responding to a two-particle–one-hole intermediate state
which, after analytical continuation to real frequencies,
gives a non-vanishing imaginary part. Moreover these con-
tributions to ImΣΛ are the leading ones, because all ne-
glected contributions from further insertions of one-loop
diagrams at the vertices have intermediate states with a
number of intermediate particles larger than 3 and can
therefore be expected to give only small contributions due
to phase space restrictions. If we ignored the flow of the
coupling constants and integrated the expression thus ob-
tained down to Λ = 0, we would retrieve the bare two-loop
selfenergy. In this paper we neglect the feedback of the self-
energy on the flow of the coupling function. In principal
this effect is contained in the RG equations but keeping it
would increase the complexity of the calculations consid-
erably.

Formally we can calculate the selfenergy ΣΛ=0(kF, iω)
at the FS for Matsubara frequency iω by integrating the
RG differential equation for the scale-dependent selfenergy
depicted in Figure 1 as follows:

ΣΛ=0(kF, iω) =
∫ 0

Λ0

dΛ
∫

d2k′

(2π)2

×
∑
iω′

[−2VΛ(kF,k′,kF) + VΛ(kF,k′,k′)]SΛ(k′, iω′).

For VΛ we now substitute the differential equation for the
four-point vertex, integrated from the starting scale Λ0

down to Λ. This corresponds to inserting the one-loop
diagram on the right side of Figure 1 into the self-energy
graph on the left side. Then we get a second integral over
dΛ′:

ΣΛ=0(kF, iω) =
∫ 0

Λ0

dΛ
∫ Λ

Λ0

dΛ′
∑

VΛ′GΛ′SΛ′SΛVΛ′ .

(1)

Here the sum is over all internal wavevectors, frequencies
and spin indices of the different possible diagrams. For
simplicity we have suppressed the arguments of the four-
point vertices and propagators in this expression. Obvi-
ously, repeating the insertion of scale-integrated one-loop
terms for the vertices yields a perturbation expansion of
the self-energy with arbitrary numbers of intermediate
states. Here we restrict the analysis to the contributions

(a) (b) (c)

Fig. 6. The different diagrams for the two-loop self-energy.
Diagrams (a) and (b) contribute to the imaginary part of the
self-energy, contributions of type (c) are real for external fre-
quency ω + iδ. There are 3 other diagrams of type (c) with
different orientation of the vertices which are not shown here.

from the two-loop term (1), which contains the Landau-
Fermi liquid self-energy and the deviations from it through
the flow to strong coupling of the coupling function VΛ.

In the integrand in (1), the two four-point vertices VΛ′ ,
one single scale propagator SΛ′ and one full propagator
GΛ′ depend on Λ′. The only Λ-dependence is in the differ-
entiated cutoff-function Ċ(Λ) of the original single-scale
propagator SΛ. Therefore (1) has the structure

ΣΛ=0(kF, iω) =
∑∫ 0

Λ0

dΛĊ(Λ)
∫ Λ

Λ0

dΛ′ R(Λ′).

The double scale integral is numerically expensive, but we
can circumvent it by a partial integration, resulting in

ΣΛ=0(kF, iω) =
∑∫ 0

Λ0

dΛ [C(0)− C(Λ)] R(Λ). (2)

The remainder R(Λ) contains one single scale propagator
at Λ and a propagator for modes above Λ. The difference
of cutoff functions in the rectangular brackets means that
the third of the three internal lines has its support on
modes below the cutoff. The form (2) only contains a sin-
gle Λ-integral and the vertex functions at Λ. Therefore it
can be integrated along with the flow of the four-point ver-
tex. Note however that for consistency with (1) we should
always integrate out the full scale range.

Diagrammatically the insertion of the one-loop flow
into the one-loop diagram for the self-energy yields three
topologically different diagrams which are shown in Fig-
ure 6. Each of these three diagrams gives 6 contributions:
one of the internal line contains modes above Λ, another
modes at Λ, and the third below Λ.

Since we are interested in the quasiparticle scattering
rates, we perform an analytical continuation onto the real
frequency axis: the integrand of the two diagrams (a) and
(b) in Figure 6 contains the factor

1
iω − ε1 − ε2 + ε3

which upon replacing iω → ω + iδ with ω = 0 yields an
imaginary part ∝ δ(ε1+ε2−ε3). The δ-function is smeared
with a small width for the numerical treatment.

One can show that for scale-independent vertices, e.g.
all VΛ(k1,k2,k3) = U , this scheme is equivalent to the cal-
culation of the bare two-loop diagram. Thus for ordinary
cases where the flow does not diverge we should obtain
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two-dimensional Fermi-liquid results. In our case the flow
goes to strong coupling, and this leaves two possibilities
for the analysis: either we choose a high temperature such
that the couplings do not become too large, then we can
apply the above scheme down to zero scale and obtain an
estimate for the imaginary part of the self-energy above
the strong coupling phase. The other option is, if we want
to analyze the situation in the strong coupling regime, to
stop the flow of the couplings at some scale Λfreeze and
integrate the flow down to zero scale with fixed couplings.
We can then vary Λfreeze and thus obtain the change in
the imaginary part of the self-energy due to the flow of the
couplings. This will tell us on which FS parts the renor-
malized interactions weaken the quasiparticles most and
we will e.g. find that in the hole-doped case the quasi-
particles in the BZ diagonals are not affected by strong
scattering. The results of both types of analysis are de-
scribed in Section 6.

3 Comparison of the flows to strong coupling

First we compare the RG flow of the interactions. For the
chosen parameters we generally find a flow to strong cou-
pling, i.e. at sufficiently low scales and temperatures some
components of the coupling function VΛ(k1, k2, k3) take
absolute values larger than the band energy. We analyze
the flow to strong coupling at scale ΛW where the coupling
functions just exceed the order of the bare bandwidth, i.e.
at VΛW ,max ≈ 8−12t. At these scales and for typical tem-
peratures, the coupling functions have already developed
a pronounced k-space structure and the dominant interac-
tion terms at this scale will certainly be important for the
strong coupling state. On the other hand the FS shift due
to one-loop self-energy corrections is still small [10] such
that it does not qualitatively change the flow above ΛW .
Similarly the scattering rate for particles at the FS (see be-
low) remains smaller than ΛW . Note however that at ΛW
and for initial interaction U = 3t the flow has not reached
an asymptotic form and different classes of coupling con-
stants would evolve differently if we continued the flow
below ΛW (where our method breaks down). Therefore
the analysis of the flow to strong coupling remains qual-
itative and does not provide definitive conclusions about
the true strong coupling state.

3.1 Hole-doped model

The hole-doped case with t′ = −0.3t was extensively dis-
cussed in reference [10]. In order to simplify the compar-
ison with results for the electron-doped case we repeat
the main observations briefly. We found that in the den-
sity region where the FS crosses the US close to the saddle
points the dominant processes which grow fastest upon in-
tegrating out higher energy modes are given by mutually
reinforcing umklapp and Cooper processes between the
saddle point regions. This leads to a flow to strong cou-
pling at relatively high critical scales. The scattering pro-
cesses involving quasiparticles in the BZ diagonals grow
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Fig. 7. Snapshot of the RG flow when the couplings have
reached values larger than the bandwidth for the hole-doped
case in the saddle point regime, t′ = −0.3t and µ = −t. The
color bar denotes the value of the couplings V (k1, k2, k3)/t,
where kF(k1) and kF(k2) are the two incoming wavevectors on
the FS and the outgoing wavevector kF(k3) is fixed at point 1
or 4. The 32 points are numbered according to their position
around the FS, points 1, 8, 9, 16, etc. are closest to the saddle
points.
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Fig. 8. Flow of certain coupling functions and susceptibilities
in the saddle point regime of the hole-doped case with t′ =
−0.3t and µ = −t. The dashed lines in the left plot show the
flow of Cooper couplings, the solid lines umklapp processes
between the saddle points. The dotted line denotes the largest
coupling in the BZ diagonal. In the right plot the solid line
denotes the d-wave pairing susceptibility χd−wave, the dashed-
dotted line the AF susceptibility χs(π, π).

as well but they are merely driven by the couplings be-
tween the saddle points and diverge less rapidly. These
results are shown in Figure 7 and Figure 8. Starting the
flow with purely repulsive interaction, the Cooper chan-
nel will initially always decrease the values of the Cooper
scatterings. However if the FS is close to the saddle points
the particle-hole channel with the rapidly growing umk-
lapp processes also affects the large angle pair scattering
processes which involve momentum transfer (π, π). In the
saddle point regime of the hole-doped case this effect is
stronger than the suppression through the Cooper chan-
nel and the large angle pair scattering processes grow upon
reducing the energy scale which in turn enhances the flow
of the small angle pair scattering to negative values. Sim-
ilarly it can be also seen that the growth of the d-wave
pair scattering enhances the flow of the umklapp (π, π)
processes. In the saddle point regime with the FS close
to the (0, π) and (π, 0)-points this mutual reinforcement
between d-wave and AF processes is very effective as it
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Fig. 9. Snapshot of the RG flow when the couplings have
reached values larger than the bandwidth for the electron-
doped case, t′ = −0.3t, T = 0. For the upper two plots µ =
−0.1t (〈n〉 ≈ 1.18), and the FS intersects the US. The left plots
show the dependence of the scattering vertex VΛ(k1, k2, k3 = 1)
with the first outgoing wavevector fixed at point 1 on the in-
coming wavevectors kF(k1) and on kF(k2) where ki labels the
positions of the points around the FS (see Fig. 5). In the upper
right plot, k3 = 4, i.e. the first outgoing wavevector is near the
BZ diagonal. The sharp vertical repulsive feature at k2 = 21 is
due to nesting with the wavevector kF(k2) − kF(k3) ≈ (π, π).
For the lower plots, µ = 0.04t (〈n〉 ≈ 1.22) and the FS lies
outside the US. The left plot again corresponds to k3 = 1 and
the right plot is for k3 = 4. The diagonal features belong to
Cooper processes with kF(k1) + kF(k2) = 0. The sign struc-
ture of the Cooper pair scattering reveals that the dominant
pairing symmetry is dx2−y2 , e.g. VΛ(1, 17, 1) is attractive while
VΛ(1, 17, 9) is repulsive.

only involves low-energy quasiparticles. Therefore d-wave
and AF processes diverge together at a single high energy
scale.

3.2 Flow in the electron-doped case

For the electron-doped side we again take t′ = −0.3t.
Here, unlike the hole-doped case, smaller absolute values
of t′ yield a similar picture, only the critical scales be-
come larger due to the improved nesting. Half-filling cor-
responds to µ = −0.65t. Upon increasing µ and 〈n〉, the
FS crosses the US close to the BZ diagonals until µ = 0t
and then loses contact to the US if we further increase
the particle number. At these densities the flow to strong
coupling changes drastically, therefore we concentrate on
this filling range. In Figure 10 we show the flow to strong
coupling for two different chemical potentials: in the upper
plots µ = −0.1t and the FS intersects the umklapp surface
close to the BZ diagonals. Here the dominant processes
which become large at comparably high energy scales are
umklapp processes between the BZ diagonals involving the
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Fig. 10. Flow of coupling functions (left plots) and susceptibil-
ities (right plots) in the crossover regime of the electron-doped
case, t′ = −0.3t and T = 0. The upper plots correspond to
µ = −0.1t where the FS intersects the US and the AF processes
processes diverge at non-zero energy scale. The lower plots
are for µ = 0.04t, which is further away from half-filling. The
dashed lines in the left plots show the flow of Cooper couplings
at the FS, the solid lines umklapp processes in the BZ diagonal
VΛ(4, 4, 21), VΛ(3, 4, 21), and VΛ(5, 4, 21). The dashed-dotted
lines denote Cooper processes between the saddle point regions
with band energies below the FS (discussed in the text). In the
right plots the solid line denotes the d-wave pairing susceptibil-
ity and the dashed-dotted line the AF susceptibility χs(π, π).
Note the logarithmic scale axis. The inset in the lower right
plot shows the Cooper pair scattering V (k1,−k1,k3) close to
the instability as function of the angle of k3 around the FS.
The filled squares (open diamonds) correspond to scattering
between k-space points below (above) the FS at band energy
±0.8t while the circles connected by straight solid lines show
the values at for pairs on the FS. k1 is at angle ≈ −π below
(above) or on the FS (see Fig. 4).

momentum transfer (π, π) (see solid lines in Fig. 10 and
the sharp features in Fig. 9).

The Cooper processes between particles at the FS have
dominant dx2−y2-symmetry but remain of the order of the
bandwidth even when we integrate the flow far out of
the perturbative range. Thus the coupling to the strongly
growing AF processes is only weak, as expected from the
location of the FS. Consequently the characteristic en-
ergy scales where AF and d-wave channels start to grow
are very different, in strong contrast to the saddle point
regime of the hole-doped case. Nonetheless we can still
find signs of a coupling between d-wave and AF channel:
if we consider Cooper processes for particles at the saddle
points below the FS we find a much stronger growth to-
wards lower scales (see dashed-dotted lines in Fig. 10). A
large angle Cooper pair scattering between two inequiv-
alent saddle points involves momentum transfer ≈ (π, π)
and is therefore enhanced by the AF processes. But un-
like the saddle point regime in the hole-doped case, the
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k-space regions where the coupling occurs are away from
the FS and therefore there is only a weak influence of this
mechanism on the true low-energy excitations. One should
also note that in more realistic calculations including self-
energy effects the coupling through off-FS processes will
be further reduced by the short lifetimes of the quasipar-
ticles in these regions.

Increasing the band filling such that the FS loses its
intersection with the US, the umklapp and other (π, π)-
processes in the diagonals get cut off and saturate at low
scales (see solid lines in the lower left plot of Fig. 10). Thus
the d-wave Cooper processes can finally diverge at very
low scales (at least two orders of magnitude lower than in
the previous case). The Cooper pair scattering is shown
in the inset of Figure 10. Again the off-FS d-wave Cooper
processes closer to the saddle points benefit more from the
AF scattering processes and grow more strongly than the
Cooper processes for pairs at the FS, but this difference
becomes less with increasing particle density away from
half-filling. Apart from this side-effect we emphasize that
in this low-scale d-wave regime only Cooper processes di-
verge. Umklapp and and nesting processes are cut off and
do not develop singularities.

4 Flow of the susceptibilities

Next we compare the flow of various susceptibilities. First
we analyze the real parts of the static d-wave pairing
susceptibility χd−wave and the AF susceptibility χs(π, π).
Moreover, as a kind of cross-check, we analyze the cou-
pling to uniform static charge and spin fields for electrons
at different points on the Fermi surface.

In the saddle point regime of the hole-doped case the
overall behavior of these probes together with general fea-
tures of the RG flow of the couplings indicated the ten-
dency towards formation of an insulating spin liquid: both
χd−wave and χs(π, π) diverge together in a similar way (see
Fig. 8) and in view of the mutual reinforcement between
both channels it is very plausible that the strong coupling
state will incorporate both types of fluctuations. On the
other hand the coupling of the saddle point regions to
uniform charge and spin fields becomes increasingly sup-
pressed in the RG flow (the charge couplings are shown in
the left plot in Fig. 11), suggesting the opening of charge
and spin gaps around the saddle points. In contrast to that
the charge coupling for quasiparticles in the BZ diagonals
does not renormalize to zero. This anisotropic flow is con-
sistent with a truncation of the FS at the saddle points
while the BZ diagonals remain metallic. The flow of the
scattering rates described in Section 6 corroborates this
scenario.

In the electron-doped case the situation is rather
different. Since d-wave and AF channel do not couple
strongly the corresponding susceptibilities have very dif-
ferent flows. While χs(π, π) already grows considerably
at higher scales and eventually diverges if the system is
not far away from half filling, χd−wave becomes large only
at low scales. We therefore expect that the system will
have only two different phases if we allow for a sufficient
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Fig. 11. Flow of the coupling of quasiparticles at different
points on the FS to uniform external charge fields, normalized
to the values with the bare interactions U = 3t. The left plot
corresponds to the saddle-point regime of the hole-doped case
µ = −t, T = 0.04t, while the right plot shows data for the
electron-doped case µ = −0.1t, T = 0.01t. The solid lines are
for k-points on the FS in the vicinity of the saddle points, the
dashed lines for k-points on the FS in the BZ diagonal. Λfreeze

is the energy scale down to which the flow of the coupling func-
tion is taken into account. Below Λfreeze the coupling functions
are kept constant. The insets show the angular variation along
the FS for different values of Λfreeze.

amount of 3D coupling: one AF phase with higher critical
scale and temperature, and, if we increase the band filling
such that the instability in the latter channel becomes cut
off by the FS curvature, a rapid drop in the energy scale
with a low-T Kohn-Luttinger-type d-wave phase. This –
compared to the saddle point regime – more conventional
picture is also supported by the behavior of the uniform
susceptibilities and the k-space dependence of the coupling
to the corresponding external fields: the coupling to uni-
form charge fields (see right plot in Fig. 11) is not strongly
suppressed, i.e. there are no pronounced indications for
incompressible or truncated parts of the FS in our weak-
coupling analysis. The reduction of the charge couplings
becomes even weaker when the filling is increased. In con-
trast to the hole-doped case the strongest suppression now
occurs for wavevectors in the BZ diagonals, in agreement
with the fact that Umklapp processes flow most strongly
there (see inset in the right plot of Fig. 11). Again this
type of anisotropy compares well the angular-dependent
quasiparticle lifetimes obtained with the RG calculations
described below and FLEX (fluctuation exchange approx-
imation) [17].

5 Tentative phase diagram
for the electron-doped case

The tentative phase diagram for the hole-doped Hubbard
model extracted from the one-loop flow to strong coupling
was discussed in [10]. Here present a schematic phase di-
agram for the electron-doped side.

Generally with this type of calculations it is difficult
to determine exact phase boundaries, e.g. the parameters
where the ground state changes from AF to d-wave super-
conducting long range order. Nor can we actually prove
the existence of the phases suggested by one-loop flow.
Self-energy and higher order effects will become large once
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Fig. 12. Dependence of the flow to strong coupling on µ and
T in the electron-doped regime for t′ = −0.3t and U = 3t.
The thick line denotes the critical temperature above which
we can integrate down to Λ = 0 with all couplings remain-
ing smaller than 15t. In the d-wave dominated regime χd−wave

grows stronger, while in the AF regime χs(π, π) dominates (the
precise criteria are given in the text). For the displayed values
of µ the electron-doping varies between 0.2 (µ = −0.1t) and
0.23 (µ = 0.08t).

the coupling functions exceed the order of the band width
and from the flow below that scale it is impossible to tell
whether the different classes of couplings really diverge or
not. Similarly fluctuations around possible ordered states
are not taken into account properly. Nevertheless since
in the electron-doped case we observe two different ten-
dencies which are weakly coupled and dominate on op-
posite sides of the considered density range, we can well
discriminate between distinct regimes with different domi-
nant fluctuations. If long range order is possible (at T = 0
or at finite T if we add some degree of three-dimensional
coupling), its type will most probably correspond to the
dominant fluctuations visible in the one-loop RG. Bear-
ing in mind these remarks, we present a schematic phase
diagram for the case t′ = −0.3t and initial U = 3t in
Figure 12. For chemical potential µ < 0.03t (which corre-
sponds to 〈n〉 ≈ 1.21 per site) we find an AF dominated
instability with comparably high critical temperature Tc

(above Tc we can integrate down to Λ = 0 with all cou-
plings staying smaller than 15t.). For larger chemical po-
tential the instability is d-wave dominated. The criterion
we used for the distinction was the derivative of χd−wave

and χs(π, π) with respect to Λ when the maximal coupling
grows larger than 12t. We repeat that this distinction does
not allow any quantitative predictions for the true phase
diagram. In particular the critical scales and temperatures
for the d-wave phase strongly depend on the criterion used
to separate the regimes1.

1 If we chose to compare the susceptibilities at higher values
of the couplings, i.e. 20t instead of 12t, the d-wave phase would
extend further to smaller electron-dopings (to approx. µ =
0.01t). Very close to the instability however, when the coupling
function becomes huge, our one-loop RG scheme cannot be
justified.

In the electron-doped case considered here there are
two disparate energy scales. The first one, which can be
high close to half filling, is related to the AF-(π, π) pro-
cesses between the BZ diagonals. The second energy scale
is given by the critical scale of the d-wave Cooper channel
and remains much lower close to half-filling. Only if the AF
energy scale becomes too low at increased doping, when
the FS curvature prevents a real flow to strong coupling
of the AF processes, an instability in the d-wave Cooper
channel can occur. In the present case, the crossover en-
ergy scale is mainly determined by the particle density
which regulates the overlap of the FS with the US, i.e. the
low energy phase space available for elastic scattering with
momentum transfer (π, π). A qualitatively similar picture
was found by Manske et al. [18] who solved the general-
ized Eliashberg equations with a spin-fluctuation induced
pairing interaction obtained within a FLEX scheme.

As mentioned above, on the electron-doped side the
flow to strong coupling is qualitatively similar for all
t′ < 0, only the critical scales and relative widths of the
regimes change. Thus for band fillings larger than one
particle per site our observations for t′ = −0.3t are in
full qualitative agreement with the results of Zanchi and
Schulz [6] for t′ = 0 and Halboth and Metzner [8,9] for
smaller absolute values of the next-nearest neighbor hop-
ping t′. In particular in the analysis of reference [9] the
d-wave channel becomes dominant roughly when the FS
loses its intersection with the US upon increasing the elec-
tron density.

6 Scattering rates

6.1 Hole-doped case

Here we describe our results for the quasiparticle scatter-
ing rates in the hole-doped case. There we are mainly in-
terested in electron densities corresponding to the saddle
point regime [10] briefly described above, because there
the flow to strong coupling becomes qualitatively differ-
ent from the d-wave superconducting instability at lower
densities. Again, since we cannot prove the FS truncation
suggested by the flow in the saddle point regime, our main
goal is to analyze whether the behavior of the scattering
rates is consistent with this scenario.

Typical results for the scattering rates in the saddle
point regime (µ = −1.1t) above the critical temperature
obtained with the method described in Section 2.2 are
shown in Figure 13. The temperature was chosen such
that the couplings VΛ do not become too large when we
integrate the flow to Λ = 0, for the lowest T shown the
maximum coupling reaches ≈ 11.5t. This is already larger
than the bandwidth, but this high value is only reached at
low scales and most couplings remain smaller. Therefore
the results should be qualitatively correct. An anisotropy
in the scattering rate is clearly observable but not too pro-
nounced, the maximum ratio between ImΣ at the saddle
points and in the diagonals at π/4 is ≈ 2. The tempera-
ture dependence of ImΣ(kF, ω = 0) is shown in Figure 13
for µ = −1.1t which is above the saddle point regime and
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Fig. 13. Left: Temperature dependence of imaginary part of
the self-energy at four different positions on the FS for the hole-
doped case with µ = −1.1t and t′ = −0.3t. The dashed lines
belong to points in the BZ diagonal, the solid lines to points
closer to the saddle points. Right: Imaginary part of the self-
energy versus angle around the FS in the saddle point regime at
µ = −1.1t for different temperatures above the instability. The
lower line (circles) corresponds to T = 0.15t, the middle line
(diamonds) to T = 0.18t and the upper line is at T = 0.21t.
For T = 0.15t the largest coupling at Λ = 0 is ≈ 11.5t, for
T = 0.21t they reach ≈ 8.9t. The saddle points are at angles 0
and π/2.

close to the van Hove doping at µ = −1.2t. All curves
for the different positions on the Fermi surface show an
almost linear increase with T . Both, the angular variation
and the temperature dependence, are qualitatively con-
sistent with the ARPES results by Valla et al. [15]2. In
comparison with the model assumptions in [13] we note
that our calculations at temperatures above the flow to
strong coupling yield a smaller anisotropy in the scatter-
ing rates and no T 2 behavior for the quasiparticles in the
BZ diagonal. Our data resemble more FLEX results ob-
tained by Kontani et al. [17] Altmann et al. [19]. The
first group was able to describe resistivity and Hall co-
efficients in qualitative agreement with the experiments.
For high temperatures the qualitative similarity between
FLEX calculations and our RG analysis is not acciden-
tal because for T > Tc when the flow does not diverge,
the main scattering occurs in the (π, π) spin fluctuation
channel which the typical FLEX schemes focus on.

From a theoretical point of view the linear-T depen-
dence is not unexpected because already the bare two-loop
diagram with unrenormalized couplings yields this behav-
ior if the band filling is sufficiently close to the van Hove
filling [20,21]. Hence it should be considered as an effect
of the van Hove singularities and does not immediately
imply a breakdown of the quasiparticle concept.

For lower temperatures the coupling function flows to
strong coupling at a non-zero critical scale Λc. Therefore
we cannot integrate the flow down to zero scale and do
not obtain a good approximation for ImΣ with the above
method. At Λc the selfenergy diverges together with the
couplings and we expect that the quasiparticles will be at
least partially destroyed. Although we cannot really ac-

2 Valla et al. [15] find a leveling off of the scattering rate very
close to the saddle points at lowest T in the normal state, which
is not present in our results. If this is an intrinsic effect of the
CuO2-planes, it may be beyond our weak coupling calculation.
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Fig. 14. Left: Change of the scattering rate through the flow of
the interactions VΛ for different positions on the Fermi surface
in the hole-doped case, calculated on a 48 × 3 system. Λfreeze

is the scale below which the interactions are kept constant.
Right: Angular variation of ImΣ(kF, ω = 0) with kF varying
on the FS from one to the next saddle point. The different lines
shows Σ(kF, ω = 0) with the couplings stopped at VΛ,max = 6t
(bottom line), 9t, 12t and 15t (top line). The inset shows the
12 points on a quarter of the FS. For both plots µ = −1.1t and
T = 0.04t corresponding to the saddle point regime.

cess this strong coupling region, we can gain some insight
on how this quasiparticle destruction takes place by con-
sidering the change in the two-loop selfenergy through the
flow of the coupling function. The results for µ = −t and
T = 0.04t are shown in Figure 14. If we freeze the flow
of the four point vertices VΛ already at high scales, we
basically obtain the bare two-loop selfenergy when we in-
tegrate the RG equation for the selfenergy down to Λ = 0.
There, the anisotropy between saddle point regions and
BZ diagonals is small. If we now subsequently include the
flow of VΛ by reducing Λfreeze, the scattering rate for quasi-
particles around the saddle points grows strongly. For the
quasiparticles in the BZ diagonals the scattering rate is
not much affected by the flow of the couplings. Thus the
flow of the scattering rates for these values of the band
filling is consistent with a breaking up of the FS into two
distinct regions, as suggested in [10] based on an analysis
of the flow of the coupling function and susceptibilities:
around the saddle points, the quasiparticles are subject
to divergent scattering processes, there we also found the
strong suppression of the charge compressibility. In the
BZ diagonals which appeared to remain compressible, the
scattering rate stays in the weak coupling range, consis-
tent with the FS remaining untruncated in these regions.

When the band filling is increased further towards half-
filling the energy and temperature scale for the flow to
strong coupling rises and the anisotropy of the scattering
rates at temperatures above this flow to strong coupling
becomes weaker. The reason is that the scattering pro-
cesses between the saddle point regions lose their dom-
inant role, and the strongest scattering processes occur
between FS parts connected by (π, π), now closer to the
BZ diagonals.

6.2 Electron-doped case

In Figure 15 we show the results for the electron-doped
case obtained at higher temperatures where the flow does
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Fig. 15. Left: Temperature dependence of imaginary part of
the selfenergy at four different positions on the FS for the
electron-doped case. The dashed lines belong to points in the
BZ diagonal, the solid lines to points closer to the saddle points.
Right: Angular variation of ImΣ(kF, ω = 0) with kF varying
on the FS from one to the next saddle point. The different lines
show Σ(kF, ω = 0) at different temperatures from T = 0.16t
(bottom line) to T = 0.28t (top line). The results in both plots
were obtained using a 32×3 system with t′ = −0.3t and µ = 0.

not exceed the order of the bandwidth. There are strik-
ing differences compared to the results obtained in the
hole-doped saddle point regime. First the overall magni-
tude of ImΣ(kF, ω = 0) at a given temperature is much
smaller, almost by an order of magnitude. We attribute
this to the reduced density of states around the FS, the
van Hove singularities are far away from the FS. Second
the temperature dependence of the scattering rates is far
from being linear and appears to be roughly consistent
with a T 2-behavior at low temperatures above the flow
to strong coupling3. The data for k-points in the BZ di-
agonal do not extrapolate to 0 for T → 0 due to the in-
crease of the coupling function at lower T . Further, the
anisotropy of the scattering rate is different and much
weaker than in the hole-doped case. The FS parts which
feel the strongest scattering at lower T are now in the BZ
diagonal (see right plot in Fig. 15 for angular dependence).
This is consistent with the flow of the interactions which
grow fastest in these regions. Our results also agree quali-
tatively with FLEX calculations [17,19], which show that
the in the electron-doped case the “hot spots” with the
shortest quasiparticle-lifetime move towards the BZ diag-
onal. Nonetheless due to the weakness of the anisotropy
the data do not suggest a truncation of the FS like in the
hole-doped case. This can be also seen at lower tempera-
tures (see Fig. 16), where flow of the scattering rates re-
mains comparably weak when the coupling function flows
to strong coupling.

7 Discussion

We have presented N -patch RG results for the two-dimen-
sional t-t′ Hubbard model with particle density n > 1
per site and t′ = −0.3t. We have shown that the RG

3 In an isotropic two-dimensional Fermi liquid, we expect
ImΣ(ω = 0, kF) ∼ (T/TF)2 log(TF/T ) [22,23]. Since our cal-
culations are rather qualitative we do not attempt a detailed
comparison of the data with this T -dependence.
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Fig. 16. Left: Change of the scattering rate through the flow of
the interactions VΛ for different positions on the Fermi surface
in the electron-doped case. Λfreeze is the scale below which the
interactions are kept constant. Right: Angular variations of
ImΣ(kF, ω = 0) with kF varying on the FS from one to the
next saddle point. The different lines shows Σ(kF, ω = 0) with
the couplings stopped at VΛ,max = 6t (bottom line), 9t, 12t and
15t (top line). The inset shows the 12 points on a quarter of
the FS. For both plots µ = −0.1t and T = 0.04t.

flow to strong coupling is qualitatively different from the
n < 1 case because of the different location of the FS in
both cases. The saddle-point regime [10] which we asso-
ciated with the pseudogap state in the (hole-)underdoped
cuprates is absent in our RG study of the electron-doped
side. Instead the picture closely resembles the observations
made by Zanchi and Schulz [6] and Halboth and Metzner
[8,9] for zero or smaller absolute value of the next-nearest
neighbor hopping t′. Upon increasing the electron den-
sity we find a rapid decrease of the critical scale for the
instability where the flow of the otherwise strongly grow-
ing AF susceptibility is cut off. This leaves a small win-
dow for a Kohn-Luttinger-type dx2−y2 -wave instability at
lower scales and temperatures. The tendency towards in-
compressibility and truncation of parts of the FS is weaker
than in the hole-doped case and strongest in the BZ diag-
onal. At temperatures above the strongly coupled phase
we find slightly anisotropic scattering rates with strongest
scattering of quasiparticles, i.e. “hot spots” in the BZ
diagonal. The temperature dependence of the scattering
rates is roughly quadratic.

Indeed the experimental phase diagram of the electron-
doped cuprates shows a relatively wide AF phase with
a boundary to superconducting phase with lower critical
temperature. There is increasing experimental evidence
[24–27] that the pairing symmetry of this phase is dx2−y2 .
Moreover the in-plane resistivity in the normal state shows
a quadratic temperature dependence [28,29].

Note that in our RG study the difference between the
energy scales characteristic to these phases is considerably
larger than the experimental values. However one should
keep in mind that our one-loop analysis can only provide a
qualitative picture for the understanding of the real mate-
rials. In particular we cannot make any predictions about
the stability of the phases suggested by the RG flow and
the precise location of the transition from AF to d-wave
regime. In fact the Fermi surface in Nd1.85Ce0.15CuO4

with a superconducting Tc of 24K seen by ARPES [27]
still intersects the Umklapp surface. Thus it might be that
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our criterion for the transition from AF to d-wave regime
overestimates the width of the AF regime.

The saddle point regime in the hole-doped case with
the diverging umklapp processes was interpreted as a pre-
cursor of the Mott state where the FS becomes truncated
at the saddle points [10]. The anisotropic scattering rates
described above, which grow strongest at the saddle points
as the flow goes to strong coupling, are consistent with
this scenario. Due to the location of the FS the diverg-
ing umklapp processes also generate strong d-wave pairing
correlations. In this situation the d-wave-paired conden-
sate which may form at sufficiently low temperature will
still be subject to the umklapp scattering at the saddle
points where the FS becomes truncated. This may result
in a reduced superfluid weight arising from the open parts
of the FS in the BZ diagonals only.

In the electron-doped case the umklapp and other AF
processes predominantly occur between the BZ diagonals
and do not strongly drive the d-wave correlations, they
can only lead to a rapid growth of AF correlations. Thus,
instead of being strongly coupled and mutually reinforc-
ing each other in the flow, AF and d-wave channel have
disparate characteristic energy scales and influence each
other only weakly. As soon as the umklapp processes in
the BZ diagonals flow to strong coupling, the instability
is entirely dominated by AF correlations because the en-
ergy scale of the d-wave instability is much lower. This
implies that coming from the electron-overdoped side the
precursors of the Mott state only occur in the AF phase
and should have less influence on the d-wave state. In par-
ticular we speculate that in the superconducting state all
electrons contribute to the superfluid weight in contrast
with the hole-(under)doped case.
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